Differential targeting of two glucose transporters from Leishmania enriettii is mediated by an NH2-terminal domain

نویسندگان

  • R C Piper
  • X Xu
  • D G Russell
  • B M Little
  • S M Landfear
چکیده

Leishmania are parasitic protozoa with two major stages in their life cycle: flagellated promastigotes that live in the gut of the insect vector and nonflagellated amastigotes that live inside the lysosomes of the vertebrate host macrophages. The Pro-1 glucose transporter of L. enriettii exists as two isoforms, iso-1 and iso-2, which are both expressed primarily in the promastigote stage of the life cycle. These two isoforms constitute modular structures: they differ exclusively and extensively in their NH2-terminal hydrophilic domains, but the remainder of each isoform sequence is identical to that of the other. We have localized these glucose transporters within promastigotes by two approaches. In the first method, we have raised a polyclonal antibody against the COOH-terminal hydrophilic domain shared by both iso-1 and iso-2, and we have used this antibody to detect the transporters by confocal immunofluorescence microscopy and immunoelectron microscopy. The staining observed with this antibody occurs primarily on the plasma membrane and the membrane of the flagellar pocket, but there is also light staining on the flagellum. We have also localized each isoform separately by introducing an epitope tag into each protein sequence. These experiments demonstrate that iso-1, the minor isoform, resides primarily on the flagellar membrane, while iso-2, the major isoform, is located on the plasma membrane and the flagellar pocket. Hence, each isoform is differentially sorted, and the structural information for targeting each transporter isoform to its correct membrane address resides within the NH2-terminal hydrophilic domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytoskeletal Association Is Important for Differential Targeting of Glucose Transporter Isoforms in Leishmania

The major glucose transporter of the parasitic protozoan Leishmania enriettii exists in two isoforms, one of which (iso-1) localizes to the flagellar membrane, while the other (iso-2) localizes to the plasma membrane of the cell body, the pellicular membrane. These two isoforms differ only in their cytosolic NH2-terminal domains. Using immunoblots and immunofluorescence microscopy of detergent-...

متن کامل

Distinct signals in the GLUT4 glucose transporter for internalization and for targeting to an insulin-responsive compartment

In adipose and muscle cells, insulin stimulates a rapid and dramatic increase in glucose uptake, primarily by promoting the redistribution of the GLUT4 glucose transporter from its intracellular storage site to the plasma membrane. In contrast, the more ubiquitously expressed isoform GLUT1 is localized at the cell surface in the basal state, and shows a less dramatic translocation in response t...

متن کامل

Crystal structure of the C-terminal domain of tubulin-binding cofactor C from Leishmania major

Tubulin-binding cofactor C stimulates GTPase activity and contributes to the release of the heterodimeric α/β-tubulin from a super-complex of tubulin monomers and two ancillary cofactors. We have determined the 2.2 Å resolution crystal structure of the C-terminal domain of tubulin-binding cofactor C from Leishmania major based on single wavelength anomalous dispersion measurements targeting a s...

متن کامل

Leishmania amazonensis: metabolic adaptations induced by resistance to an ABC transporter blocker.

We compared growth rate, cell glucose turnover and expression of ATP-binding-cassette (ABC) transporters in Leishmania amazonensis (LTB0016; LTB) versus LTB(160) selected for resistance against the ABC transporter blocker glibenclamide. Additionally, we evaluated the influence of drug-resistance on Leishmania sensitivity against 2-mercaptoacetate and 2-deoxyglucose. Our data demonstrate that (1...

متن کامل

Immunization against full-length protein and peptides from the Lutzomyia longipalpis sand fly salivary component maxadilan protects against Leishmania major infection in a murine model

Leishmaniasis is an arthropod vectored disease causing considerable human morbidity and mortality. Vaccination remains the most realistic and practical means to interrupt the growing number and diversity of sand fly vectors and reservoirs of Leishmania. Since transmission of Leishmania is achieved exclusively by sand fly vectors via immune-modulating salivary substances, conventional vaccinatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 128  شماره 

صفحات  -

تاریخ انتشار 1995